Source code for magpylib._lib.displaySystem

# -------------------------------------------------------------------------------
# magpylib -- A Python 3 toolbox for working with magnetic fields.
# Copyright (C) Silicon Austria Labs, https://silicon-austria-labs.com/,
#               Michael Ortner <magpylib@gmail.com>
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Affero General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU Affero General Public License for more
# details.
#
# You should have received a copy of the GNU Affero General Public License along
# with this program.  If not, see <https://www.gnu.org/licenses/>.
# The acceptance of the conditions of the GNU Affero General Public License are
# compulsory for the usage of the software.
#
# For contact information, reach out over at <magpylib@gmail.com> or our issues
# page at https://www.github.com/magpylib/magpylib/issues.
# -------------------------------------------------------------------------------

from copy import deepcopy
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from numpy import array, amax, linspace, pi, sin, cos, finfo
from magpylib._lib.classes.magnets import Box, Cylinder, Sphere
from magpylib._lib.classes.currents import Line, Circular
from magpylib._lib.classes.moments import Dipole
from magpylib._lib.classes.sensor import Sensor
from magpylib._lib.classes.base import FieldSampler
from magpylib._lib.utility import drawCurrentArrows, drawMagAxis, drawDipole, isDisplayMarker
from magpylib._lib.utility import drawSensor, isSensor
from magpylib._lib.mathLib import angleAxisRotation_priv
from magpylib._lib.mathLib import angleAxisRotation
from magpylib import Collection


# tool-tip / intellisense helpers -----------------------------------------------
# Class initialization is done purely by kwargs. While some # of these can be 
# set to zero by default other MUST be given to make any sense 
# (e.g. magnetization). To improve tool tips and intellisense we inizilize them
# with names, e.g. mag=(Mx, My, Mz). This looks good, but it requires that
# these names are pre-initialzed:
x=y=z=0.0 # Position Vector
sensor1=sensor2="sensor type"
numpyArray=[[x,y,z]] # List of Positions
listOfPos=[[x,y,z]] # List of Positions
listOfSensors=[sensor1,sensor2] # List of Sensors



# -------------------------------------------------------------------------------
[docs]def displaySystem(sources, markers=listOfPos, subplotAx=None, sensors=listOfSensors, suppress=False, direc=False, figsize=(8, 8)): """ Shows the collection system in an interactive pyplot and returns a matplotlib figure identifier. WARNING ------- As a result of an inherent problem in matplotlib the Poly3DCollections z-ordering fails when bounding boxes intersect. Parameters ---------- markers : list[scalar,scalar,scalar,[label]] List of position vectors to add visual markers to the display, optional label. Default: [[0,0,0]] Example ------- >>> from magpylib import Collection, source >>> c=source.current.Circular(3,7) >>> x = Collection(c) >>> marker0 = [0,0,0,"Neutral Position"] >>> marker1 = [10,10,10] >>> x.displaySystem(markers=[ marker0, ... marker1]) Parameters ---------- sensors : list[sensor] List of :class:`~magpylib.Sensor` objects to add the display. Default: None Example ------- >>> from magpylib import Collection, source >>> c=source.current.Circular(3,7) >>> x = Collection(c) >>> sensor0 = Sensor() >>> sensor1 = Sensor(pos=[1,2,3], angle=180) >>> x.displaySystem(sensors=[ sensor0, ... sensor1]) Parameters ---------- suppress : bool If True, only return Figure information, do not show. Interactive mode must be off. Default: False. Example ------- >>> ## Suppress matplotlib.pyplot.show() >>> ## and returning figure from showing up >>> from matplotlib import pyplot >>> pyplot.ioff() >>> figureData = Collection.displayFigure(suppress=True) Parameters ---------- direc : bool Set to True to show current directions and magnetization vectors. Default: False Return ------ matplotlib Figure object graphics object is displayed through plt.show() Example ------- >>> from magpylib import source, Collection >>> pm1 = source.magnet.Box(mag=[0,0,1000],dim=[1,1,1],pos=[-1,-1,-1],angle=45,axis=[0,0,1]) >>> pm2 = source.magnet.Cylinder(mag=[0,0,1000],dim=[2,2],pos=[0,-1,1],angle=45,axis=[1,0,0]) >>> pm3 = source.magnet.Sphere(mag=[0,0,1000],dim=3,pos=[-2,1,2],angle=45,axis=[1,0,0]) >>> C1 = source.current.Circular(curr=100,dim=6) >>> col = Collection(pm1,pm2,pm3,C1) >>> col.displaySystem() Parameters ---------- subplotAx : matplotlib subplot axe instance Use an existing matplotlib subplot instance to draw the 3D system plot into. Default: None Example ------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from magpylib.source.magnet import Box >>> from magpylib import Collection >>> #create collection of one magnet >>> s1 = Box(mag=[ 500,0, 500], dim=[3,3,3], pos=[ 0,0, 3], angle=45, axis=[0,1,0]) >>> c = Collection(s1) >>> #create positions >>> xs = np.linspace(-8,8,100) >>> zs = np.linspace(-6,6,100) >>> posis = [[x,0,z] for z in zs for x in xs] >>> #calculate fields >>> Bs = c.getBsweep(posis) >>> #reshape array and calculate amplitude >>> Bs = np.array(Bs).reshape([100,100,3]) >>> Bamp = np.linalg.norm(Bs,axis=2) >>> X,Z = np.meshgrid(xs,zs) >>> # Define figure >>> fig = plt.figure() >>> ## Define ax for 2D >>> ax1 = fig.add_subplot(1, 2, 1, axisbelow=True) >>> ## Define ax for 3D displaySystem >>> ax2 = fig.add_subplot(1, 2, 2, axisbelow=True,projection='3d') >>> ## field plot 2D >>> ax1.contourf(X,Z,Bamp,100,cmap='rainbow') >>> U,V = Bs[:,:,0], Bs[:,:,2] >>> ax1.streamplot(X, Z, U, V, color='k', density=2) >>> ## plot Collection system in 3D ax subplot >>> c.displaySystem(subplotAx=ax2) Raises ------ AssertionError If Marker position list is poorly defined. i.e. listOfPos=(x,y,z) instead of lisOfPos=[(x,y,z)] """ collection = Collection(sources) if subplotAx is None: fig = plt.figure(dpi=80, figsize=figsize) ax = fig.gca(projection='3d') else: ax = subplotAx # count magnets Nm = 0 for s in collection.sources: if type(s) is Box or type(s) is Cylinder or type(s) is Sphere: Nm += 1 cm = plt.cm.hsv # Linter complains about this but it is working pylint: disable=no-member # select colors colors = [cm(x) for x in linspace(0, 1, Nm+1)] ii = -1 SYSSIZE = finfo(float).eps # Machine Epsilon for moment dipolesList = [] magnetsList = [] sensorsList = [] currentsList = [] markersList = [] # Check input and Add markers to the Markers list before plotting for m in markers: assert isDisplayMarker(m), "Invalid marker definition in displaySystem:" + str( m) + ". Needs to be [vec3] or [vec3,string]" markersList += [m] for s in sensors: if s == sensor1: continue else: assert isSensor(s), "Invalid sensor definition in displaySystem:" + str( s) sensorsList.append(s) for s in collection.sources: if type(s) is Box: ii += 1 # increase color counter P = s.position D = s.dimension/2 # create vertices in canonical basis v0 = array([D, D*array([1, 1, -1]), D*array([1, -1, -1]), D*array([1, -1, 1]), D*array([-1, 1, 1]), D*array([-1, 1, -1]), -D, D*array([-1, -1, 1])]) # rotate vertices + displace v = array([angleAxisRotation_priv(s.angle, s.axis, d)+P for d in v0]) # create faces faces = [[v[0], v[1], v[2], v[3]], [v[0], v[1], v[5], v[4]], [v[4], v[5], v[6], v[7]], [v[2], v[3], v[7], v[6]], [v[0], v[3], v[7], v[4]], [v[1], v[2], v[6], v[5]]] # plot boxf = Poly3DCollection( faces, facecolors=colors[ii], linewidths=0.5, edgecolors='k', alpha=1) ax.add_collection3d(boxf) # check system size maxSize = amax(abs(v)) if maxSize > SYSSIZE: SYSSIZE = maxSize if direc is True: s.color = colors[ii] magnetsList.append(s) elif type(s) is Cylinder: ii += 1 # increase color counter P = s.position R, H = s.dimension/2 resolution = 20 # vertices phis = linspace(0, 2*pi, resolution) vertB0 = array([[R*cos(p), R*sin(p), -H] for p in phis]) vertT0 = array([[R*cos(p), R*sin(p), H] for p in phis]) # rotate vertices+displacement vB = array( [angleAxisRotation_priv(s.angle, s.axis, d)+P for d in vertB0]) vT = array( [angleAxisRotation_priv(s.angle, s.axis, d)+P for d in vertT0]) # faces faces = [[vT[i], vB[i], vB[i+1], vT[i+1]] for i in range(resolution-1)] faces += [vT, vB] # plot coll = Poly3DCollection( faces, facecolors=colors[ii], linewidths=0.5, edgecolors='k', alpha=1) ax.add_collection3d(coll) # check system size maxSize = max([amax(abs(vB)), amax(abs(vT))]) if maxSize > SYSSIZE: SYSSIZE = maxSize if direc is True: s.color = colors[ii] magnetsList.append(s) elif type(s) is Sphere: ii += 1 # increase color counter P = s.position R = s.dimension/2 resolution = 12 # vertices phis = linspace(0, 2*pi, resolution) thetas = linspace(0, pi, resolution) vs0 = [[[R*cos(phi)*sin(th), R*sin(phi)*sin(th), R*cos(th)] for phi in phis] for th in thetas] # rotate vertices + displacement vs = array( [[angleAxisRotation_priv(s.angle, s.axis, v)+P for v in vss] for vss in vs0]) # faces faces = [] for j in range(resolution-1): faces += [[vs[i, j], vs[i+1, j], vs[i+1, j+1], vs[i, j+1]] for i in range(resolution-1)] # plot boxf = Poly3DCollection( faces, facecolors=colors[ii], linewidths=0.5, edgecolors='k', alpha=1) ax.add_collection3d(boxf) # check system size maxSize = amax(abs(vs)) if maxSize > SYSSIZE: SYSSIZE = maxSize if direc is True: s.color = colors[ii] magnetsList.append(s) elif type(s) is Line: P = s.position vs0 = s.vertices # rotate vertices + displacement vs = array( [angleAxisRotation_priv(s.angle, s.axis, v)+P for v in vs0]) # plot ax.plot(vs[:, 0], vs[:, 1], vs[:, 2], lw=1, color='k') # check system size maxSize = amax(abs(vs)) if maxSize > SYSSIZE: SYSSIZE = maxSize if direc is True: # These don't move in the original object, sCopyWithVertices = deepcopy(s) sCopyWithVertices.vertices = vs # We just draw the frame rotation, discard changes currentsList.append(sCopyWithVertices) elif type(s) is Circular: P = s.position R = s.dimension/2 resolution = 20 # vertices phis = linspace(0, 2*pi, resolution) vs0 = array([[R*cos(p), R*sin(p), 0] for p in phis]) # rotate vertices + displacement vs = array( [angleAxisRotation_priv(s.angle, s.axis, v)+P for v in vs0]) # plot ax.plot(vs[:, 0], vs[:, 1], vs[:, 2], lw=1, color='k') # check system size maxSize = amax(abs(vs)) if maxSize > SYSSIZE: SYSSIZE = maxSize if direc is True: # Send the Circular vertice information sCopyWithVertices = deepcopy(s) sCopyWithVertices.vertices = vs # to the object drawing list currentsList.append(sCopyWithVertices) elif type(s) is Dipole: P = angleAxisRotation(s.position, s.angle, s.axis) maxSize = amax(abs(P)) if maxSize > SYSSIZE: SYSSIZE = maxSize dipolesList.append(s) for m in markersList: # Draw Markers ax.scatter(m[0], m[1], m[2], s=20, marker='x') if(len(m) > 3): zdir = None ax.text(m[0], m[1], m[2], m[3], zdir) # Goes up to 3rd Position maxSize = max([abs(pos) for pos in m[:3]]) if maxSize > SYSSIZE: SYSSIZE = maxSize for s in sensorsList: # Draw Sensors maxSize = max([abs(pos) for pos in s.position]) if maxSize > SYSSIZE: SYSSIZE = maxSize drawSensor(s,SYSSIZE,ax) for d in dipolesList: drawDipole(d.position, d.moment, d.angle, d.axis, SYSSIZE, ax) if direc is True: # Draw the Magnetization axes and current directions drawCurrentArrows(currentsList, SYSSIZE, ax) drawMagAxis(magnetsList, SYSSIZE, ax) #for tick in ax.xaxis.get_ticklabels()+ax.yaxis.get_ticklabels()+ax.zaxis.get_ticklabels(): # tick.set_fontsize(12) ax.set_xlabel('x[mm]')#, fontsize=12) ax.set_ylabel('y[mm]')#, fontsize=12) #change font size through rc parameters ax.set_zlabel('z[mm]')#, fontsize=12) ax.set( xlim=(-SYSSIZE, SYSSIZE), ylim=(-SYSSIZE, SYSSIZE), zlim=(-SYSSIZE, SYSSIZE), ) plt.tight_layout() if suppress == True: return plt.gcf() else: plt.show()